Работа силы по перемещению заряда. Работа по перемещению электрического заряда в электростатическом поле. потенциал. разность потенциалов. Формула работы электростатического поля

На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами электрического поля отрицательного заряда Q. По закону Кулона сила, перемещающая заряд, является переменной и равной

Где r-переменное расстояние между зарядами.

; Это выражение можно получить так

Величина представляет собой потенциальную энергию W п заряда в данной точке электрического поля:

Знак (-) показывает, что при перемещении заряда полем его потенциальная энергия убывает, переходя в работу перемещения.

Величина равная потенциальной энергии единичного положительного заряда (q=+1), называется потенциалом электрического поля.

Тогда

Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению, единичного положительного заряда из одной точки в другую.

Потенциал точки электрического поля равен работе по перемещению единичного положительного заряда из данной точки на бесконечность.

Единица измерения - Вольт =Дж/Кл

Работа перемещения заряда в электрическом поле не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути.

Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной.

Напряженность поля является его силовой характеристикой, а потенциал –энергетической.

Связь между напряженностью поля и его потенциалом выражается формулой

,

Знак (-) обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, а в сторону возрастания потенциала.

5. Использование электрического поля в медицине.

Франклинизация, или «электростатический душ», представляет собой лечебный метод, при котором организм больного или отдельные участки его подвергаются воздействию постоянного электрического поля высокого напряжения.

Постоянное электрическое поле при процедуре общего воздействия может достигать 50 кВ, при местном воздействии 15-20кВ.

Механизм лечебного действия. Процедуру франклинизации проводят таким образом, что голова больного либо другой участок тела становятся как бы одной из пластин конденсатора, в то время как второй является электрод, подвешенный над головой, или устанавливаемый над местом воздействия на расстоянии 6-10см. Под влиянием высокого напряжения под остриями игл, закрепленных на электроде, возникает ионизация воздуха с образованием аэроионов, озона и окислов азота.

Вдыхание озона и аэроионов вызывает реакцию сосудистой сети. После кратковременного спазма сосудов происходит расширение капилляров не только поверхностных тканей, но и глубоких. В результате улучшаются обменно-трофические процессы, а при наличии повреждения тканей стимулируются процессы регенерации и восстановления функций.

В результате улучшения кровообращения, нормализации обменных процессов и функции нервов происходит уменьшение головных болей, повышенного артериального давления, повышенного сосудистого тонуса, урежению пульса.

Применение франклинизации показано при функциональных расстройствах нервной системы

Примеры решения задач

1. При работе аппарата для франклинизации ежесекундно в 1 см 3 воздуха образуется 500000 легких аэроионов. Определить работу ионизации, необходимую для создания в 225 см 3 воздуха такого же количества аэроионов за время лечебного сеанса (15 мин). Потенциал ионизации молекул воздуха считать равным 13,54 В, условно считать воздух однородным газом.

-потенциал ионизации, А –работа ионизации, N-количество электронов.

2. При лечении электростатическим душем на электродах электрической машины приложена разность потенциалов 100кВ. Определить, какой заряд проходит между электродами за время одной процедуры лечения, если известно, что силы электрического поля при этом совершают работу 1800Дж.

Отсюда

Электрический диполь в медицине

В соответствии с теоремой Эйтховена, лежащей в основе электрокардиографии, сердце представляет собой электрический диполь, расположенный в центре равностороннего треугольника (треугольник Эйтховена), вершины которого условно можно считать,

находящимися в правой руке, левой руке и левой ноге.

За время сердечного цикла изменяется как положение диполя в пространстве, так и дипольный момент. Измерение разности потенциалов между вершинами треугольника Эйтховена позволяет определить соотношение между проекциями дипольного момента сердца на стороны треугольника следующим образом:

Зная напряжения U AB , U BC , U AC можно определить, как ориентирован диполь относительно сторон треугольника.

В электрокардиографии разность потенциалов между двумя точками тела (в данном случае между вершинами треугольника Эйтховена) называется отведением.

Регистрация разности потенциалов в отведениях в зависимости от времени называется электрокардиограммой.

Геометрическое место точек конца вектора дипольного момента за время сердечного цикла называется вектор-кардиограммой .

Лекция №4

Контактные явления

1. Контактная разность потенциалов. Законы Вольта.

2. Термоэлектричество.

3. Термопара, ее использование в медицине.

4. Потенциал покоя. Потенциал действия и его распространение.

1. При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты).

Эта разность потенциалов называется контактной.

Для того, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла.

Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A 1 и A 2, причем A 1 < A 2 . Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A 2 > A 1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:

(1)

Приведем теперь в контакт два металла с A 1 = A 2 , имеющие различные концентрации свободных электронов n 01 >n 02 . Тогда начнется преимущественный перенос свободных электронов из первого металла во второй. В результате первый металл зарядится положительно, второй – отрицательно. Между металлами возникнет разность потенциалов , которая прекратит дальнейший перенос электронов. Возникающая при этом разность потенциалов определяется выражением:

, (2)

где k-постоянная Больцмана

В общем случае контакта металлов, различающихся и работой выхода и концентрацией свободных электронов к.р.п. из (1) и (2) будет равна

(3)

Легко показать, что сумма контактных разностей потенциалов последовательно соединенных проводников равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников.

Это положение называется вторым законом Вольты.

Если теперь непосредственно соединить концевые проводники, то существующая между ними разность потенциалов компенсируется равной по величине разностью потенциалов , возникающей в контакте 1 и 4. Поэтому к.р.п. не создает тока в замкнутой цепи металлических проводников, имеющих одинаковую температуру.

2. Термоэлектричество – это зависимость контактной разности потенциалов от температуры.

Составим замкнутую цепь из двух разнородных металлических проводников 1 и 2. Температуры контактов a и b будем поддерживать различными Т a > T b . Тогда, согласно формуле (3), к.р.п. в горячем спае больше, чем в холодном:

В результате между спаями a и b возникает разность потенциалов

Называемая термоэлектродвижущей силой, а в замкнутой цепи пойдет ток I. Пользуясь формулой (3), получим

Где для каждой пары металлов

3. Замкнутая цепь проводников, создающая ток за счет различия температуры контактов между проводниками, называется термопарой.

Из формулы (4) следует, что термоэлектродвижущая сила термопары пропорциональна разности температур спаев (контактов).

Формула (4) справедлива и для температур по шкале Цельсия:

Термопарой можно измерить только разности температур. Обычно один спай поддерживается при 0ºС. Он называется холодным спаем. Другой спай называется горячим или измерительным.

Термопара обладает существенными преимуществами перед ртутными термометрами: она чувствительна, безинерционна, позволяет измерять температуру малых объектов, допускает дистанционные измерения.

Измерение предела температурного поля тела человека.

Считается, что температура тела человека постоянна, однако это постоянство относительно, поскольку в различных участках тела температура неодинакова и меняется в зависимости от функционального состояния организма.

Температура кожи имеет свою вполне определенную топографию. Самую низкую температуру (23-30º) имеют дистальные отделы конечностей, кончик носа, ушные раковины. Самая высокая температура – в подмышечной области, в промежности, области шеи, губ, щек. Остальные участки имеют температуру 31-33,5ºС.

У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием диагностики заболеваний методом построения профиля температурного поля с помощью контактных устройств: термопары и термометра сопротивления.

4 . Поверхностная мембрана клетки не одинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя)

При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия, который распространяется в нервных волокнах.

Механизм распространения потенциала действия по нервному волокну рассматривается по аналогии с распространением электромагнитной волны по двухпроводной линии. Однако, наряду с этой аналогией существуют и принципиальные различия.

Электромагнитная волна, распространяясь в среде, ослабевает, так как ее энергия рассеивается, превращаясь в энергию молекулярно-теплового движения. Источником энергии электромагнитной волны является ее источник: генератор, искра и т.д.

Волна возбуждения не затухает, так как получает энергию из самой среды, в котрой она распространяется (энергия заряженной мембраны).

Таким образом, распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки.

Примеры решения задач

1. При построении профиля температурного поля поверхности тела человека используется термопара с сопротивлением r 1 =4Ом и гальванометр с сопротивлением r 2 =80Ом; I=26мкА при разности температур спаев ºС. Чему равна постоянная термопары?

Термоэдс, возникающая в термопаре, равна

(1) где термопары, -разность температур спаев.

По закону Ома для участка цепи где U принимаем как . Тогда

Лекция №5

Электромагнетизм

1. Природа магнетизма.

2. Магнитное взаимодействие токов в вакууме. Закон Ампера.

4. Диа-, пара- и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

5. Магнитные свойства тканей организма.

1 . Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами.

Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты.

Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества.

2 . Магнитное взаимодействие токов в вакууме. Закон Ампера .

Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I 1 и I 2 в них и обратно пропорциональна квадрату расстояния r между участками:

Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и .

На всякий заряд, находящийся в электрическом поле, действует сила, которая может перемещать этот заряд. Определим работу А перемещения точечного положительного заряда из точки О в точку совершаемую силами электрического поля отрицательного заряда (рис. 158). По закону Кулона, сила, перемещающая заряд, является переменной и равной

где переменное расстояние между зарядами. Заметим, что по такому же закону (обратной пропорциональности квадрату расстояния) изменяется сила, перемещающая массу в гравитационном поле массы (см. § 17).

Поэтому работа перемещения заряда в электрическом поле (совершаемая электрическими силами) выразится формулой, аналогичной формуле работы перемещения массы в гравитационном поле (совершаемой гравитационными силами):

Формула (19) выводится точно таким же путем, каким была выведена формула (8) в § 17.

Еще проще можно вывести формулу (19) посредством интегрирования:

Знак минус перед интегралом поставлен в связи с тем, что для сближающихся зарядов величина отрицательна, тогда как работа должна быть положительной, поскольку перемещение заряда происходит в направлении действия силы.

Сопоставляя формулу (19) с общей формулой (4) из § 17, придем к выводу, что величина представляет собой потенциальную энергию заряда в данной точке электрического поля:

Знак минус показывает, что по мере перемещения заряда силами поля его потенциальная энергия убывает, переходя в работу перемещения. Величина

равная потенциальной энергии единичного положительного заряда называется потенциалом электрического поляу или электрическим потенциалом. Электрический потенциал не зависит от величины перемещаемого заряда и потому может служить характеристикой электрического поля, подобно тому, как гравитационный потенциал служит характеристикой гравитационного поля.

Подставив выражение потенциала (21) в формулу работы (19), получим

Полагая получим

Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного положительного заряда из одной точки в другую.

Переместим теперь заряд (действуя против сил поля) из некоторой точки на бесконечность Тогда, согласно формулам (21) и (23), и

При получим Следовательно, потенциал точки электрического поля равен работе перемещения единичного положительного заряда из данной точки на бесконечность.

Из формулы (24) установим единицу измерения потенциала, называемую вольтом (В):

т. е. вольт является потенциалом такой точки поля, при перемещении из которой заряда «а бесконечность совершается работа в Размерность потенциала

Теперь, учитывая формулу (25), можно показать, что установленная в § 75 единица измерения напряженности электрического поля действительно равна

Если заряд создающий поле, отрицателен, то силы поля препятствуют перемещению единичного положительного заряда на бесконечность, совершая тем самым отрицательную работу. Поэтому потенциал любой точки поля, созданного отрицательным зарядом, является отрицательным (подобно тому, как отрицателен гравитационный потенциал любой точки поля тяготения). Если же заряд, создающий поле, положителен, то силы поля сами перемещают единичный положительный заряд на бесконечность, совершая положительную работу. Поэтому потенциал любой точки поля положительного заряда является положительным. Исходя из этих соображений можно записать выражение (21) в более общем виде:

где знак минус относится к случаю отрицательного заряда, а знак плюс - к случаю положительного заряда

Если поле создается несколькими зарядами, то его потенциал равен алгебраической сумме потенциалов полей всех этих зарядов (потенциал - скалярная величина: отношение работы к заряду). Поэтому потенциал поля любой заряженной системы можно рассчитать на основе приведенных ранее формул, предварительно разбив систему на большое число точечных зарядов.

Работа перемещения заряда в электрическом поле, как и работа перемещения массы в гравитационном поле, не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути. Следовательно, электрические силы являются потенциальными силами (см. § 17). Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной. Из формулы (22) следует, что работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю (так как Это означает, что силы электрического поля направлены перпендикулярно эквипотенциальным поверхностям, т. е. силовые линии поля перпендикулярны эквипотенциальным поверхностям (рис. 159).

Чем на самом деле является напряжение? Это способ описания и измерения напряженности электрического поля. Само по себе напряжение не может существовать без электронного поля вокруг положительных и отрицательных зарядов. Так же, как магнитное поле окружает Северный и Южный полюса.

По современным понятиям, электроны не оказывают взаимного влияния. Электрическое поле – это нечто, что исходит от одного заряда и его присутствие может ощущаться другим.

О понятии напряженности можно сказать то же самое! Просто это помогает нам представить, как электрическое поле может выглядеть. Честно говоря, оно не обладает ни формой, ни размером, ничем подобным. Но поле функционирует с определённой силой на электроны.

Силы и их действие на заряженную частицу

На заряженный электрон, воздействует сила с некоторым ускорением, заставляя его перемещаться все быстрее и быстрее. Этой силой совершается работа по передвижению электрона.

Силовые линии – это воображаемые очертания, которые возникают вокруг зарядов (определяется электрическим полем), и если мы поместим какой-либо заряд в эту область, он испытает силу.

Свойства силовых линий:

  • путешествуют с севера на юг;
  • не имеют взаимных пересечений.

Почему у двух силовых линий не возникает пересечений? Потому что не бывает этого в реальной жизни. То, о чём говорится, является физической моделью и не более. Физики изобрели её для описания поведения и характеристик электрического поля. Модель очень хороша при этом. Но помня, что это всего лишь модель, мы должны знать о том, для чего такие линии нужны.

Силовые линии демонстрируют:

  • направления электрических полей;
  • напряженность. Чем ближе линии, тем больше сила поля и наоборот.

Если нарисованные силовые линии нашей модели пересекутся, расстояние меж ними станет бесконечно малыми. Из-за силы поля, как формы энергии, и из-за фундаментальных законов физики это невозможно.

Что такое потенциал?

Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.

Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.

Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.

Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.

А ниже показан заряд с большим потенциалом и плотностью потока.

Например: во время грозы электроны истощаются в одной точке и собираются в другой, образуя электрическое поле. Когда сила станет достаточной, чтобы сломать диэлектрическую проницаемость, получается удар молнии (состоящий из электронов). При выравнивании разности потенциалов электрическое поле разрушается.

Электростатическое поле

Это разновидность электрического поля, неизменного повремени, образуемого зарядами, которые не двигаются. Работа передвижения электрона определяется соотношениями,

где r1 и r2 – расстояния заряда q до начальной и конечной точки траектории движения. По полученной формуле видно, что работа при перемещении заряда из точки в точку не зависит от траектории, а зависит лишь от начала и конца перемещения.

На всякий электрон действует сила, и поэтому при перемещении электрона в поле выполняется определенная работа.

В электростатическом поле работа зависит лишь от конечных пунктов следования, а не от траектории. Поэтому, когда движение происходит по замкнутому контуру, заряд приходит в исходное положение, и величина работы становится равной нулю. Это происходит потому, что падение потенциала нулевое (поскольку электрон возвращается в ту же самую точку). Так как разность потенциалов нулевая, чистая работа будет также нулевой, ведь потенциал падения равен работе, деленной на значение заряда, выраженное в кулонах.

Об однородном электрическом поле

Однородным называется электрическое поле меж двух противоположно заряженных плоских металлических пластин, где линии напряженности параллельны между собой.

Почему сила действия на заряд в таком поле всегда одинаковая? Благодаря симметрии. Когда система симметрична и есть только одна вариация измерения, всякая зависимость исчезает. Есть много других фундаментальных причин для ответа, но фактор симметрии – самый простой.

Работа по передвижению положительного заряда

Электрическое поле – это поток электронов от «+» до «-», приводящий к высокой напряженности области.

Поток – это количество линий электрического поля, проходящих через него. В каком направлении будут положительные электроны двигаться? Ответ: по направлению электрического поля от положительного (высокого потенциала) к отрицательному (низкому потенциалу). Поэтому положительно заряженная частица будет двигаться именно в этом направлении.

Интенсивность поля во всякой точке определяется как сила, воздействующая на положительный заряд, помещенный в эту точку.

Работа заключается в переносе электронных частиц по проводнику. По закону Ома, можно определить работу разными вариациями формул, чтобы провести расчет.

Из закона сохранения энергии следует, что работа – это изменение энергии на отдельном отрезке цепи. Перемещение положительного заряда против электрического поля требует совершения работы и в результате получается выигрыш в потенциальной энергии.

Заключение

Из школьной программы мы помним, что электрическое поле образуется вокруг заряженных частиц. На любой заряд в электрическом поле воздействует сила, и вследствие этого при движении заряда выполняется некоторая работа. Большим зарядом создается больший потенциал, который производит более интенсивное или сильное электрическое поле. Это означает, что возникает больший поток и плотность на единицу площади.

Важный момент заключается в том, что должна быть выполнена определенной силой работа по перемещению заряда от высокого потенциала к низкому. Тем самым уменьшается разница заряда между полюсами. Перемещение электронов от токи до точки требует энергии.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Элементарная работа сил в электростатическом поле

Переместим положительный точечный заряд в поле заряда на малое расстояние из точки N в точку В , рисунок 10.

Рисунок 10

При малом перемещении, , где . Из рисунка видно, что . По определению из механики, элементарная работа

С учетом (6):

(10)

Поскольку – бесконечно-малая величина, изменением силы внутри интерваламожно пренебречь.

Работа в электростатическом поле при перемещении точечного заряда на конечное расстояние

Пусть заряд переместился из точки 1 в точку 2, рисунок 11, на расстояние , соизмеримое с и, по произвольной траектории. Найдем величину работы А , пользуясь результатом формулой (10). Для этого достаточно проинтегрировать левую часть выражения от 0до А, а правую – от до . В результате получим:

(11)

Изменив знак правой части (11) и порядок вычитания в скобках, получим окончательную формулу

(12)

Из (12) вытекают важные следствия :

1. Работа в электростатическом поле не зависит от формы траектории движения заряда.

2. Знак работы определяется:

а) знаками зарядов,

б) знаком круглой скобки, который, в свою очередь зависит от соотношения между и.

3. В любом случае если , работу совершают силы электростатического поля ; если , работа совершается внешними силами неэлектрической природы , действующими против сил электрического поля.

Рисунок 11 Рисунок 12

Работа в электростатическом поле при перемещении точечного заряда по замкнутой траектории

Переместим заряд в поле заряда по траектории . Работа, при таком перемещении складывается из работы по перемещению по траектории (рисунок 12).

(13)

и работы по перемещению по траектории :

(14)

На рисунке 12 точка , соответствующая расстоянию – любая точка траектории . Складывая (14) и (13) , получим:

4. Характеристики электрического поля: потенциал, разность потенциалов. Эквипотенциальные поверхности, связь потенциала с напряженностью. Доказательство: эквипотенциальные поверхности перпендикулярны вектору (силовым линиям).

Потенциал – энергетический параметр электростатического поля

Рисунок 11 Рисунок 12

Согласно рисунку 11, в точке 1 и в точке 2 на заряд действуют силы , . Следовательно, в каждой из этих точек заряд обладает энергией , – соответственно, поскольку силы , способны совершить работы , . Полагая заряд незамкнутой системой, находящейся в поле заряда , по определению энергии, имеем:

(16)

Согласно (14),

(17)

Поскольку, по условию задачи, кроме заряда никакие другие заряды не влияют на , согласно (17):



(18)

Следовательно, если два любых точечных заряда находятся на расстоянии , энергия их взаимодействия, рисунок 13:

Рисунок13

(19)

Разделим (19) на величину :

Величина , как и напряженность поля (9), не зависит от величины и является параметром электрического поля заряда , в котором находится заряд .

Отношение энергии к величине заряда называется потенциалом той точки поля, в которой находится заряд .

(21)

В системе СИ потенциал измеряется в вольтах (В).

Из (21) следует, что знак потенциала определяется знаком заряда, создающего этот потенциал.

Для потенциалов также справедлив принцип суперпозиции. Если потенциал создается не одним, а N точечными зарядами в точке «А», его величина равна алгебраической сумме потенциалов, созданных каждым из зарядов.

Взаимосвязь напряженности электрического поля с потенциалом

Поместим пробный заряд на расстоянии от заряда , рисунок 14. В точке «А» заряд создает поле с напряженностью и потенциалом .

Рисунок 14 Рисунок 15

Как следует из рисунка 15, поле заряда , как всякого другого точечного заряда, является центральным. В любом центральном поле сила равна изменению (градиенту) энергии, взятому с обратным знаком

В нашем случае, согласно (8) и (24),

(27)

следовательно,

(28)

Сокращая на , получаем значение напряженности электрического поля в точке А, (рисунок 14). Она равна градиенту потенциала в той же точке, взятому с отрицательным знаком:



В трехмерном пространстве формула (29) принимает вид

(30)

Направление вектора показывает направление быстрейшего возрастания потенциала. Таким образом, вектор напряженности электрического поля направлен всегда в сторону быстрейшего уменьшения потенциала.

Согласно (29) размерность напряженности можно представить в вольтах, деленных на метр: .

Эквипотенциальные поверхности – это поверхности, во всех точках которых потенциал имеет одно и то же значение. Эти поверхности целесообразно проводить так, чтобы разность потенциалов между соседними поверхностями была одинаковой. Тогда по густоте эк­випотенциальных поверхностей можно наглядно судить о значении напряженности поля в разных точках. Величина напряженности больше там, где гуще эквипотенциальные поверхности. В качестве при­мера на рисунке 2 приведено двумерное изображение электростатичес­кого поля.

Перпендику­лярен эквипотенциальной поверхности. Далее, переместимся по нормали к эквипотенциальной пове­рхности в сторону уменьшения потенциала. В этом случае и из формулы (21) следует, что . Значит, вектор направлен по нормали в сторону уменьшения потенциала.

Система заряженных тел обладает потенциальной энергией, называемой электростатической, т.к. электростатическое поле может перемещать помещенные в него заряженные тела, совершая при этом работу.

Рассмотрим работу электростатических сил по перемещению заряда q в однородном электростатическом поле с напряженностью Е, созданном двумя бесконечно большими пластинами с равными по модулю и противоположными по знаку зарядами. Свяжем начало отсчета оси координат с отрицательно заряженной пластиной. На точечный заряд q в поле действует сила . При перемещении заряда из т.1 в т.2 по силовой линии электростатическое поле совершает работу .

При перемещении заряда из т.1 в т.3 . Но . Следовательно, .

Работа электростатических сил при перемещении электрического заряда из т.1 в т.3 вычисляется по выведенной формуле при любой форме траектории. Если заряд перемещается по кривой, то ее можно разбить на очень маленькие прямолинейные участки вдоль напряженности поля и перпендикулярные ей. На перпендикулярных полю участках работа не совершается. Сумма же проекций остальных участков на силовую линию равна d 1 -d 2 , т.е.

.

Таким образом, работа при перемещении заряда в однородном электростатическом поле не зависит от формы траектории, по которой движется заряд, а зависит только от координат начальной и конечной точек пути. Этот вывод справедлив и для неоднородного электростатического поля. Следовательно, кулоновская сила является потенциальной или консервативной и ее работа при перемещении зарядов связана с изменением потенциальной энергии. Работа консервативных сил не зависит от формы траектории тела и равна изменению потенциальной энергии тела, взятой с противоположным знаком.

.

. Значит, .

Точный физический смысл имеет не сама потенциальная энергия, т.к. ее численное значение зависит от выбора начала координат, а изменение потенциальной энергии, т.к. только оно определяется однозначно.

Работа электростатического поля при перемещении заряда по замкнутому пути равна нулю, т.к. d 2 =d 1 .

ВЕЛИЧИНА, РАВНАЯ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ, ПРИХОДИВШЕЙСЯ БЫ НА ЕДИНИЧНЫЙ ПОЛОЖИТЕЛЬНЫЙ ЗАРЯД, ПОМЕЩЕННЫЙ В ДАННУЮ ТОЧКУ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, НАЗЫВАЕТСЯ ПОТЕНЦИАЛОМ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДАННОЙ ТОЧКЕ.

Потенциал - скалярная величина. Это энергетическая характеристика поля, т.к. определяет потенциальную энергию заряда в данной точке.

Потенциал определяется с точностью до некоторой постоянной, значение которой зависит от выбора нулевого уровня потенциальной энергии. С удалением в неоднородном поле от заряда, создающего поле, поле ослабевает. Значит уменьшается и его потенциал.j = О в бесконечно удаленной от заряда точке. Следовательно, потенциал поля в данной точке поля - это работа, совершаемая электростатическими силами при перемещении единичного положительного заряда из этой точки в бесконечно удаленную. Потенциал любой точки поля, созданного положительным зарядом положителен. В электротехнике за поверхность с нулевым потенциалом принимается поверхность Земли.

Разность потенциалов - разность значений потенциала в начальной и конечной точках траектории.

.

Разность потенциалов между двумя точками - это работа кулоновских сил по перемещению единичного положительного заряда между ними. Разность потенциалов имеет точный физический смысл, т.к. не зависит от выбора системы отсчета.

[V]=Дж/Кл=В. 1 вольт - это разность потенциалов между точками, при перемещении между которыми заряда в 1Кл кулоновские силы совершают работу в 1Дж.

Рассчитаем потенциал точек поля, созданного точечным зарядом Q.

Пусть заряд q перемещается в поле заряда Q по радиальной прямой. Заряд движется в неоднородном поле. Следовательно, при движении будет изменяться сила, действующая на заряд. Но можно разбить все перемещение на настолько маленькие участки dr, на каждом из которых силу можно считать постоянной. Тогда, . Тогда работа на всем пути

Работа в электростатическом поле не зависит от формы траектории.

Поэтому, если заряд перемещается от заряда, создающего поле, не по радиальной прямой, то можно из начальной точки переместить в конечную, перемещая его сначала по дуге окружности радиуса r 1 , а затем по радиальному отрезку до конечной точки. На первом участке работа совершаться не будет, т.к. кулоновская сила будет перпендикулярна скорости тела, а на втором - будет находиться по выше найденной формуле.

Потенциал результирующего поля системы зарядов в данной точке по принципу суперпозиции полей равен алгебраической сумме потенциалов составляющих полей в этой точке.

Геометрическое место точек поля равного потенциала называется ЭКВИПОТЕНЦИАЛЬНОЙ ПОВЕРХНОСТЬЮ . Эквипотенциальные поверхности перпендикулярны силовым линиям. Работа поля при перемещении заряда по эквипотенциальной поверхности равна нулю. Поверхность проводника в электростатическом поле является эквипотенциальной. Потенциал всех точек внутри проводника равен потенциалу на его поверхности. В противном случае, между точками проводника существовала бы разность потенциалов, что привело бы к возникновению электрического тока. Эквипотенциальные поверхности не могут пересекаться.

В отличие от остальных величин в электростатике разность потенциалов между телами легко измерить с помощью электрометра, соединив корпус и стрелку его с телами, находящимися в данных точках. При этом угол отклонения стрелки электрометра определяется только разностью потенциалов между телами (или, что то же самое, между стрелкой и корпусом электрометра). Практически разность потенциалов между точками в электрических цепях измеряется вольтметром, подключенным к этим точкам.

Работу по перемещению электрического заряда в однородном электростатическом поле можно найти через силовую характеристику поля - напряженность, и через энергетическую - потенциал. Это позволяет установить связь между ними.

Следовательно:

Эта зависимость позволяет ввести единицу напряжености поля в СИ. . Напряженность однородного электростатического поля равна , если разность потенциалов между точками, лежащими на одной силовой линии на расстоянии 1м, равна 1В.

В электростатическом поле напряженность направлена в сторону убывания потенциала.

Нетрудно показать, что в неоднородных полях:

Знак «-» говорит о том, что потенциал убывает вдоль силовой линии.

При переходе из одной среды в другую потенциал, в отличие от напряженности, не может изменяться скачками.

ЭЛЕКТРОЕМКОСТЬ.

Потенциал уединенного проводника пропорционален сообщенному ему заряду. Отношение же заряда на проводнике к его потенциалу не зависит от величины заряда. Оно характеризует способность данного проводника накапливать на себе заряды. ЭЛЕКТРОЕМКОСТЬЮ УЕДИНЕННОГО ПРОВОДНИКА НАЗЫВАЮТ ВЕЛИЧИНУ, РАВНУЮ ЭЛЕКТРИЧЕСКОМУ ЗАРЯДУ, ИЗМЕНЯЮЩЕМУ ПОТЕНЦИАЛ ПРОВОДНИКА НА ЕДИНИЦУ . Чтобы вычислить электроемкость уединенного проводника, надо сообщенный ему заряд разделить на возникший на нем потенциал.

1фарад - это электроемкость проводника, потенциал которого изменяется на 1В при сообщении ему заряда 1Кл. Фарад - это огромная емкость, поэтому на практике мы имеем дело с микро- и пикофарадами. Электроемкость проводника зависит от его геометрических размеров, формы и диэлектрической проницаемости среды, в которой он находится, а также от расположения окружающих тел.

Потенциал шара . Следовательно, его электроемкость

При перенесении заряда с одного из незаряженных проводников на другой между ними возникает разность потенциалов, пропорциональная величине перенесенного заряда. Отношение же модуля перенесенного заряда к возникшей разности потенциалов не зависит от величины перенесенного заряда. Оно характеризует способность данных двух тел накапливать электрический заряд. ВЗАИМНОЙ ЭЛЕКТРОЕМКОСТЬЮ ДВУХ ПРОВОДНИКОВ НАЗЫВАЕТСЯ ВЕЛИЧИНА, РАВНАЯ ЗАРЯДУ, КОТОРЫЙ НАДО ПЕРЕНЕСТИ С ОДНОГО ПРОВОДНИКА НА ДРУГОЙ ДЛЯ ИЗМЕНЕНИЯ РАЗНОСТИ ПОТЕНЦИАЛОВ МЕЖДУ НИМИ НА ЕДИНИЦУ.

Взаимная электроемкость тел зависит от размеров и формы тел, от расстояния между ними, от диэлектрической проницаемость среды, в которой они находятся.

Большой электроемкостью обладают конденсаторы - система двух или более проводников, называемых обкладками, разделенных слоем диэлектрика . Зарядом конденсатора называют модуль заряда одной из обкладок.

Чтобы зарядить конденсатор, его обкладки соединяют с полюсами источника тока или, заземлив одну из обкладок, вторую присоединяют к любому полюсу источника, второй полюс которого также заземлен.

Электроемкостью конденсатора называют заряд, сообщение которого конденсатору вызывает появление между обкладками единичной разности потенциалов . Чтобы вычислить электроемкость конденсатора, надо его заряд разделить на разность потенциалов между обкладками.

Пусть расстояние между обкладками плоского конденсатора d гораздо меньше, чем их размеры. Тогда поле между обкладками можно считать однородным, а обкладки - бесконечными заряженными плоскостями. Напряженность электростатического поля от одной обкладки: . Общая напряженность:

Разность потенциалов между обкладками:

. =>

Данная формула справедлива при малых d, т.е. при однородном поле внутри конденсатора.

Различают конденсаторы постоянной, переменной и полупеременной емкости (триммеры). Конденсаторы постоянной емкости называют, как правило, по роду диэлектрика между обкладками: слюдяные, керамические, бумажные.

В конденсаторах переменной емкости часто используется зависимость емкости от площади перекрытия обкладок.

У триммеров (или подстроечных конденсаторов) емкость изменяется при настройке радиоустройств, а при работе остается постоянной.

Похожие статьи

© 2024 bol-zoo.ru. Стоп Вредитель.